Устройство и принцип работы наземного лазерного сканера

Устройство и принцип работы наземного лазерного сканера

Вопрос точности геодезических работ, полноты и объективности получаемой информации имеет принципиальное значение, так как он во многом определяет уровень качества и надежности строящихся и эксплуатируемых зданий и сооружений. При оценке надежности и точности измерений главным является выбор методики геодезических работ и соответствующих приборов исходя из технологических требований проекта и допусков.

С ростом научно-технического прогресса и технического развития строительства совершенствовались также методы и приборы для проведения инженерно-геодезических работ. Современный геодезический прибор — это продукт высоких технологий, который объединил в себе последние достижения электроники, точной механики, оптики, материаловедения и других наук.

Относительно недавно производители геодезического оборудования стали выпускать лазерные электронные тахеометры без отражателя. Эти геодезические приборы сделали работу геодезиста эффективнее и проще, а главное — позволили быстрее решать ряд задач, с которыми геодезисты сталкиваются почти каждый день. Безусловно, такие приборы практически идеальны для проведения архитектурных обмеров. Использование безотражательных тахеометров по сравнению с измерительными системами, которые использовались ранее, увеличило производительность труда приблизительно в три раза.

Но мир традиционных геодезических и связанных с ними других координатных измерений все же консервативен. И он не обеспечил точными и полными данными возросшие потребности в построении цифровых моделей объектов, зданий и сооружений. Действительно, дискретность и разреженность пунктов с определяемыми координатами не позволяют с максимальной точностью описать объекты съемки — количество информации недостаточно.

Появление метода трехмерного лазерного сканирования полностью изменило мировоззрение: появилась возможность получать изображения, модели объектов, сооружений, целых застроенных территорий с максимальной полнотой и детальностью. Наземное лазерное сканирование стало одним из направлений научных исследований для съемок и документирования культурного наследия и широко используется для охраны и реставрации архитектурных памятников. Это относительно новая составная часть интегрированной технологи с документированием, которая позволяет быстро и точно строить трехмерные пространственные модели сложных архитектурных объектов.

Развитию трехмерного моделирования на данном этапе уделяют значительное внимание. Постоянно совершенствуются приборы сбора 3D-данных, программное обеспечение для обработки этих данных, построения трехмерных моделей.

Сегодня результаты трехмерного моделирования используют:

  • при построении трехмерных моделей застроенных территорий и создании «3D-кадастра» городов;
  • при создании цифровых моделей местности и цифровых моделей рельефа;
  • при съемке и проектировании промышленных объектов и элементов инфраструктуры;
  • в горной промышленности;
  • в строительстве и реконструкции объектов;
  • в архитектуре, археологии, а также для сохранения архитектурного наследия.

Надо отметить, что области применения трехмерного лазерного сканирования очень широки. Этот метод находит применение в компьютерной графике, машиностроении, конструировании и даже в медицине (ортопедии, протезировании, пластической хирургии, косметологии, стоматологии).

Лазерное сканирование — это метод, который позволяет создавать цифровую модель всего окружающего пространства, представляя его как массив точек с пространственными координатами. Основные отличия от съемки с помощью традиционных геодезических приборов, например тахеометров, большой уровень автоматизации работ, наличие сервопривода, автоматически поворачивающего измерительную головку в двух (вертикальной и горизонтальной) плоскостях, а самое главное — большая скорость и «плотность» измерений.

Полученная после измерений модель объекта — это гигантский набор точек (от сотни тысяч до нескольких миллионов), характеризуемых координатами, которые измерены с точностью до нескольких миллиметров. Не нужно больше смотреть в окуляр тахеометра, выискивая цель, не нужно нажимать кнопки для запуска дальномера и записи полученных данных в память, и, наконец, нет необходимости по нескольку раз переставлять прибор для поиска наиболее выгодной для съемки позиции. Теперь это можно делать с одной точки, без участия оператора и в десятки раз быстрее, при этом сохраняя необходимую точность.

Преимущества сканирования над тахеометрической и другими наземными видами съемки:

  • мгновенная трехмерная визуализация;
  • высокая точность;
  • несравнимо полные результаты;
  • быстрый сбор данных;
  • обеспечение безопасности при съемке труднодоступных и опасных объектов.

Материальные затраты по сбору данных и моделированию объекта методами трехмерного лазерного сканирования на небольших участках и объектах сопоставимы с традиционными методами съемки, а на участках большой площади или протяжности — ниже. При расчете затрат на съемку надо учитывать, что полнота и точность результатов лазерного сканирования позволяют избежать дополнительных расходов на этапах проектирования, строительства и эксплуатации объекта.

Преимущество сканирования над фотограмметрическими способами съемки

Лазерное сканирование и моделирование аналогично наземным фотограмметрическим методам, но позволяет получать координаты с одной точки стояния и без последующей сложной камеральной обработки, при этом еще и с возможностью контролировать измерения непосредственно в полевых условиях. Кроме этого, обеспечивается более высокая точность измерений в сравнении с фотограмметрическими методами при одинаковом отдалении от снимаемого объекта.

Преимущества лазерного сканирования:

  • возможность настройки некоторых моделей сканеров на фиксацию первого и/или последнего отражения, что позволяет отличать отраженный сигнал от растительности и поверхности земли — «пробивать » растительность;
  • более простой способ привязки к системе координат.

Финансовые и временные затраты свидетельствуют в пользу лазерного сканирования. При отсутствии необходимости векторизации трехмерного растра работа с результатами лазерного сканирования может происходить в режиме реального времени, что для фотограмметрических способов невозможно.

Недостатки лазерного сканирования:

  • с большинством сканеров рекомендуется работать при температуре не ниже 0°С, что устанавливает некоторые ограничения на полевые работы в зимнее время, хотя некоторые модели отлично работают и при -20°С;
  • до сегодняшнего дня ни одна из систем лазерного сканирования не имеет функций тахеометра по непосредственной привязке отдельных сканов к единой системе координат, поскольку сканирование с каждой точки стояния проводится в системе координат прибора; поэтому необходим дополнительный геодезический прибор для определения координат контрольных точек (марок) сканера;
  • на данный момент достаточно низкая степень автоматизации при трехмерном моделировании сложных объектов на основе лазерного сканирования в компьютере; большинство программных продуктов сфокусировано на индустриальных приложениях — в них принято, что большинство объектов могут описываться простыми геометрическими примитивами, что неприменимо при компьютерном моделировании памятников архитектуры.

В последнее время все боле популярными становятся некоммерческие проекты, цель которых — создание и публикация в интернете трехмерных моделей объектов культурного наследия. Сканирование — это прекрасный метод, который позволяет автоматизировать многие виды геодезических работ, заменив трудоемкие и подчас даже опасные измерения простым нажатием кнопки. Конечно же, при съемке сложных объектов необходимо также планировать работы, выбирать несколько точек для сканирования. Создание трехмерных моделей объектов, в том числе и памятников архитектуры, требует выполнения нескольких сканов с нескольких точек, расположенных как внутри, так и вне сооружения. Необходимо также совершенствовать программное обеспечение. Но, несмотря на эти обстоятельства сканирование — это более быстрый, а главное — в сотни раз более информативный метод получения данных об окружающем мире.

Публикации

Оценка фактической несущей способности конструкций
Несущая способность — это максимальный уровень нагрузок, который может выдержать… ещё
Обследование фундамента методом шурфования
Обследование фундамента методом шурфования
Шурф — это искусственное вертикальное углубление в грунте, позволяющее получить доступ к… ещё
Измеритель прочности бетона ОНИКС-1.ОС
Измеритель прочности бетона ОНИКС-1.ОС
ОНИКС-1.ОС предназначен для определения прочности и класса бетона методом отрыва со… ещё
Технологии контроля качества бетона
Технологии контроля качества бетона
Ведущие лаборатории активно внедряют новые технологии контроля качества бетона, а именно… ещё